
Volume 104, Number 2, March–April 1999
Journal of Research of the National Institute of Standards and Technology

[J. Res. Natl. Inst. Stand. Technol.104, 193 (1999)]

Manufacturer’s CORBA Interface Testing Toolkit:
Overview

Volume 104 Number 2 March–April 1999

David Flater

National Institute of Standards and
Technology,
Gaithersburg, MD 20899-0001

The Manufacturer’s CORBA Interface Test-
ing Toolkit (MCITT) is a software pack-
age that supports testing of CORBA com-
ponents and interfaces. It simplifies the
testing of complex distributed systems by
producing “dummy components” from
Interface Testing Language and Component
Interaction Specifications and by au-
tomating some error-prone programming
tasks. It also provides special commands

to support conformance, performance, and
stress testing.

Key words: code generation; CORBA;
software; testing.

Accepted: December 23, 1998

Available online: http://www.nist.gov/jres

1. Introduction

Some years ago, object-oriented programming lan-
guages were introduced to improve the maintainability
and reusability of software systems. The object-oriented
approach permits developers to map real-world entities
to programming language constructs calledclassesthat
encapsulate the attributes and behaviors needed to
model the real-world entity. Usage of object-oriented
techniques is motivated by the belief that they result in
software that is more understandable as well as more
maintainable and reusable.

Object-oriented programming languages are comple-
mented by an object-oriented mechanism for communi-
cation between programs, where the programs run inde-
pendently and may run on different physical computer
systems. The “owner” program for a given object creates
the object and uses the program memory resources to
store the state (data) of the object. When a program
invokes an operation on an object that it owns (a “local”
object), it is just like a function call; but when a program
invokes an operation on an object that is owned by a

different program (a “remote” object), the request and
its response must be transmitted over the network. Dis-
tributed object architectures, such as the Common Ob-
ject Request Broker Architecture (CORBA), [1] provide
this network service so that invoking operations on re-
mote objects is no harder for the programmer than in-
voking operations on local objects. This capability leads
to the construction of “distributed object systems” in
which the conceptual design of a distributed system is
mapped onto a distributed object implementation. Be-
cause of their maintainability, performance, and stan-
dardization, distributed object architectures are being
examined by many as a possible replacement for aging
and inadequate software infrastructures.

The Common Object Request Broker Architecture
(CORBA) supports the construction of distributed sys-
tems containing many components. These components
can interact in complex ways, not necessarily conform-
ing to a strict client-server model. This generality is
necessary to enable many real-world systems to be built

193

Volume 104, Number 2, March–April 1999
Journal of Research of the National Institute of Standards and Technology

on a distributed architecture. However, it is also the
reason why testing these systems is so difficult. Because
each component can have complex dependencies on any
number of other components, it is often impossible to
test them in isolation.

The Manufacturer’s CORBA Interface Testing Toolkit
(MCITT, pronounced “M-kit”) mitigates this problem
by minimizing the amount of effort needed to produce
simple emulations of servers, ordummy components,
[2] that can be used to replace actual servers in a testing
scenario. The person doing the testing only needs to
specify the behaviors that are important for the specific
scenario being examined, and MCITT will do the rest.
CORBA boilerplate code, memory management, and
stubs for unused operations are generated automatically.

Dummy components are useful for unit testing, where
one component must be tested in isolation; for system
testing and integration testing when some components
are not available or not trusted; and for conformance
testing, to provide a more controlled testing environ-
ment. MCITT provides additional services in support of
conformance and performance testing with specialized
Interface Testing Language (ITL) constructs: confor-
mance test assertions, automatic inclusion of confor-
mance test boilerplate, and timed loops for performance
evaluation. Test assertions can even be derived automat-
ically from Component Interaction Specifications
(CISs).

MCITT was produced in the Manufacturing Engi-
neering Laboratory of the National Institute of Stan-
dards and Technology (NIST) in support of the Ad-
vanced Process Control Framework Initiative (APCFI)
[3] and the National Advanced Manufacturing Testbed
Framework Project. [4] While not all possible features
have been implemented, the toolkit is already quite use-
ful in its current form, and sufficient groundwork for
continued development and commercialization by pri-
vate companies has been laid. A license statement de-
tailing all of the relevant intellectual property issues is
provided on the MCITT FTP site [5] and in the distribu-
tion. The toolkit is free for non-commercial use; easily
surmountable restrictions on commercialization are ex-
plained in the license.

Despite its automation of various labor-intensive
tasks, MCITT is not an “automatic testing tool.” To call
it an “automatic testing tool” would imply that it gener-
ated test cases directly from a formal specification of the
software, or that it used fault injection, [6] capture/play-
back, [7] or other potentially “context-free” techniques
to conduct some kind of testing in the absence of a
formal specification. Instead, MCITT relies on the skills
and expertise of the person who designs the tests while
reducing the amount of time that that person spends on
menial tasks. MCITT can be used in the absence of a

formal specification for the software under test, and its
testing is not limited to what can be expressed in a
formal language. Hand-written test code can easily be
mingled with MCITT-generated code, should this be-
come necessary. On the other hand, such things as pre-
and post-conditions and assertions that appear in formal
specifications also translate easily into MCITT’s speci-
fication languages.

2. Operation

There are two complementary ways of defining be-
haviors for dummy components: the procedural way,
using Interface Testing Language (ITL), and the declar-
ative way, using Component Interaction Specifications
(CISs). Each way has its own features and limitations,
but they are not mutually exclusive. Some behaviors of
a server can be derived from CIS while others are speci-
fied in ITL.

Figure 1 illustrates the process by which a server is
built using MCITT. The process is similar to that used
to build a CORBA server from IDL (Interface Definition
Language) and a C++ implementation, but in this case
the C++ implementation is generated by MCITT from
the Interface Testing Language and/or Component Inter-
action Specification files that you provide. The “big
win” is that it is less labor-intensive and less error-prone
to specify the behaviors needed for a testing scenario in
ITL or CIS, letting MCITT generate all of the boiler-
plate code and stubbed-out operations, than it is to im-
plement the entire scenario directly in C++. A “smaller
win” is that equivalent servers can then be generated for
different platforms (different CORBA products, differ-
ent operating systems, and possibly different program-
ming languages) with relative ease by selecting different
bindings when MCITT is invoked. (Bindings will be
explained in greater detail later in this article.)

2.1 Toolkit Contents

All of the previously described functionality pertains
to itlc , the ITL compiler. This is only one of the tools in
MCITT, which also containsidlmkmf (“IDL make
makefiles”) andTEd (the NIST Test Editor).

TEd is a tool for noninteractive editing of test scripts
and programs. It is used, for example, to automate the
conversion of ITL files from a C++ binding to work
with the Java binding. Written by Chris Schanzle for the
NIST SQL Test Suite, [8] it provides much of the func-
tionality of the standard Unix toolsed, [9] but it is more
portable and has some operational differences that make
it better suited for editing test cases. Because of its
usefulness in this regard, it has been included in MCITT.

194

Volume 104, Number 2, March–April 1999
Journal of Research of the National Institute of Standards and Technology

Fig. 1. Building a server with MCITT.

Idlmkmf generates makefile rules for all of the IDL
files in the working (current) directory, plus a few useful
variable definitions. Then it is only necessary to add
rules specific to the clients and servers being built to
produce a complete makefile for the CORBA applica-
tion.

2.2 Interface Testing Language

Interface Testing Language (ITL) is a simplified pro-
cedural language for specifying and testing the behavior
of CORBA clients and servers. The ITL compiler,itlc ,
uses a set of code template files called abinding to
translate ITL into an implementation language. Differ-
ent bindings can be created to absorb the differences
between one platform and the next, thus achieving a
higher degree of platform independence.

Currently, the MCITT distribution comes with bind-
ings for Orbix 2 with the Sun C++ compiler (Solaris)
and the Visual C++ compiler (Windows NT 4.0), and
a partial binding for OrbixWeb 3.1 Bindings for other

1 Certain commercial equipment, instruments, or materials are identi-
fied in this paper to foster understanding. Such identification does not
imply recommendation or endorsement by the National Institute of
Standards and Technology, nor does it imply that the materials or
equipment identified are necessarily the best available for the purpose.

platforms are easily created by copying and modifying
the existing bindings with a text editor. The platform
changes are then automatically applied to all ITL com-
pilations that select the new binding.

ITL provides the following services:
• Common operations that require messy blocks of code
in C++ are condensed into single statements.
• Specialized support is provided for conformance test-
ing, performance testing, and server emulation.
• Interfaces and operations that are not relevant to the
scenario under test can be omitted completely.
• Memory management, TIE creation, and other
“CORBA noise” are eliminated.
• Interfaces can be specified generically using their
IDL names, or different names can be assigned to
specific server object instances.

ITL features include run-time assertions, script-like
behavior specifications, conformance testing com-
mands, timed loops, and simple commands for creating
and binding to CORBA objects.

While it would drastically lengthen this article to in-
clude a full explanation of the ITL language, a simple
example would nonetheless be helpful. For a detailed
explanation of the meaning of any of the ITL commands
included in the following example, please consult the
documentation provided in the MCITT distribution. [10]

195

Volume 104, Number 2, March–April 1999
Journal of Research of the National Institute of Standards and Technology

Given the following IDL:
// Interface definition for “Hello,
world” server
interface Hello {
string says ();

};
A server can be implemented with this ITL:
// Behavior definition for “Hello,
world” server
declare Hello smiley “hello.hh”
“localhost” “hello”
begin smiley::says
return “Hello, world!”

end smiley::says
begin main
create smiley
serve “hello”

end main
This example does not demonstrate many of the use-

ful features of ITL, but it does show how the details of
a CORBA server main program—creating objects, cre-
ating TIEs for those objects, setting marker names and
timeouts, invoking the CORBA main loop, catching ex-
ceptions—are condensed to the bare minimum.

2.3 Component Interaction Specifications

A Component Interaction Specification, or CIS, is a
textual specification of an interaction scenario for an
entire distributed system. A CIS can be used to generate
servers that will execute the scenario that it describes.

Unlike an ITL file, which specifies the behavior for
one component only, a CIS can describe all of the inter-
actions between all of the components in the system.
This unified CIS can then be referenced by minimal ITL
files for all of the components, and the behaviors per-
taining to each individual component will be distilled
out of the CIS and generated by MCITT. (The ITL is
still needed to declare identifiers and to specify what
server objects should be created on startup.)

An interaction scenario consists of a tree of CORBA
requests having specified inputs, outputs, and/or return
values. The tree is rooted at the test client that initiates
the entire chain of events. In order to capture the tree
structure of the interactions in a flat ASCII script, an
outline numbering convention similar to that of Unified
Modeling Language Collaboration Diagrams [11] is
used:
1 ... first request by testing client on
server A ...
2 ... second request by testing client on
server A ...

2.1 ... request by server A on server
B ...

2.2 ... request by server A on server
C ...
3 ... third request by testing client ...

The meaning of the above outline is that the requests
on server B and server C are both made by server A
before it responds to the second request made by the test
client. That is, the implementation of the operation re-
quested in the testing client’s second request makes re-
quests on servers B and C before it returns a result to the
testing client (see Fig. 2).

Fig. 2. Illustration of Component Interaction Specification example.

At this time, CIS processing is limited to generating
the behaviors on the server side of the interactions. The
requests must still be done manually in ITL or added to
the generated source code usingTEd. (This limitation
may be removed in future development of MCITT; for
more information, see the section on limitations that
appears later in this article.)

MCITT’s CIS syntax is based on the Object Interac-
tion Diagrams, or OIDs, used by NIST’s industrial part-
ners in the Advanced Process Control (APC) Frame-
work Initiative. The format originally used by APC to
describe each request is like the following example:
1.3 install_component
Message from System Manager GUI to Sys-
tem Manager server
Format void install_component(System-
Manager::ComponentName)
Actual Message:
{

“DataStore”
}

196

Volume 104, Number 2, March–April 1999
Journal of Research of the National Institute of Standards and Technology

MCITT’s CIS makes the following cosmetic changes to
the APC format:
• Remove redundant information;
• Replace informal component/object names with
meaningful identifiers;
• Replace “Actual Message:” and “Actual Return
Structure:” (not shown in this example) with simply In:
and Out:
A CIS file consists of a sequence of messages having the
following form:
1.2 interface::operation
In: { ... argument values ... }
Out: { return value, out values ... }

The In: and Out: lists are both optional. The In: list
specifies input values for all parameters whose attribute
is in or inout; the Out: list specifies output values for the
return and for all parameters whose attribute isout or
inout. The return value, if any, is the first item in the
Out: list.

The In: list will be used to construct the request on the
client side (when implemented), and is used to perform
assertion checking of the received values on the server
side. Similarly, the Out: list is used to construct return
values and out-values, and (when implemented) to per-
form assertion checking of the received values on the
client side.

The syntax of the In: and Out: lists of CIS follows that
of the “Actual Message:” and “Actual Return Struc-
ture:” lists of APC:
• String: “data”
• Sequence:[(value, value)
• Integer: 42
• Float: 42.6667
• Character: ‘d’
• Structure: {value, value}
• Union: [tag, value]
• Object (RepositoryID): SystemManager::Widget
• Boolean: true
• Octet: 0x20
• Any: {typecode, value} (not supported at this time)
Sequences, structures, and unions may be nested to con-
struct arbitrarily complex values. Here is how the previ-
ous example from APC would be rewritten in CIS for-
mat:
1.3 SystemManager::install_component
In: {“DataStore”}

In addition to generating the results specified in the
CIS, servers generated from CIS will verify at run-time
that their in-parameters all have the expected values. For
example, the following request in a CIS:
1 ChipShooter::newParameter
In: {“rate”, 240.0, “placements per
minute”}
Out: {Parameter}

will generate code that is equivalent to this ITL (again,
please see Ref. [10], the ITL documentation, for a de-
tailed explanation of commands):
begin ChipShooter::newParameter
begin script
call 1
assert name == “rate”
assert initval == 240.0 +- 1e-5
assert units == “placements per

minute”
create newparm
return newparm

// Subsequent calls go here...
end script

end ChipShooter::newParameter
Finally, perhaps the biggest advantage of CIS is that

complex, nested data objects can be constructed with
relative ease by describing them in CIS syntax:

In: { [({{{{32, 25, 0, 7}, {6, 90,
2002}}, “ID_RONETEU”, “50”, [()}, [({
// Et cetera...

3. Capabilities

Note: Ref. [7] provides useful, simple definitions and
additional discussion for most of the following varieties
of software testing.

3.1 Unit Testing

Before a component is integrated into a distributed
system, it should be tested in isolation to find and remove
the obvious bugs. However, the developers of a compo-
nent may be discouraged by the amount of scaffolding
and throwaway code that is required to enable unit test-
ing to take place. Any requests that a component would
make on an external server must be stubbed out, or else
a dummy server must be produced. MCITT reduces the
effort of unit testing by partially automating the produc-
tion of dummy servers.

3.2 Integration Testing

It is painful indeed to go through the effort of imple-
menting and unit-testing multiple components only to
find out in integration testing that ambiguities or incon-
sistencies in the interface specifications resulted in im-
plementations that cannot work together. MCITT en-
ables these problems to be found at an earlier stage by
producing dummy components long before the real
components are finished. The interface specifications
can be “validated” using all dummy components before
implementation of the real components ever begins.

197

Volume 104, Number 2, March–April 1999
Journal of Research of the National Institute of Standards and Technology

Design problems can then be corrected at a much less
expensive stage.

3.3 System Testing

A piece of bad data may propagate through several
components before a problem ever appears. Locating the
fault in such cases can be difficult. A good strategy to
narrow the possibilities is to replace one or more of the
components with dummy components to see whether
the problem goes away. A dummy component anywhere
on the path of the bad data will break the chain and
cause correct operation, so the fault is eventually located
by walking backwards to the source.

Along the way, swapping dummy components for real
components may detect hidden deviations from the
specification, where a system is working only because
all off the components using a given interface use the
sameincorrect interpretation, and are hence “bug-com-
patible” by accident. Incorrect but functional usage of
an interface can propagate through a software project
like a virus because developers will copy or re-use
working code. Since the generation of testing scenarios
for MCITT is isolated from the iterative programming
and debugging task, they are more likely to resist
“infection” and report assertion failures for incorrect
usage. Then the code can be changed to match the
documentation, or vice-versa.

3.4 Performance Testing

MCITT supports performance testing with a special-
ized ITL construct for timed loops (begin timedloop,
end timedloop). With the exception of deducting a tare
for the minimal overhead of the timing code itself,
which is easily determined by timing an empty loop,2 all
of the needed scaffolding is produced automatically.
This feature was used in support of the APCFI to mea-
sure the CPU overhead incurred by CORBA (e.g., mem-
ory allocation, marshalling, and demarshalling). It was
found that the complexity and nesting of data structures
had a measurable impact on the CPU overhead, but the
total CPU overhead in all cases was not a significant
factor affecting the performance of the Advanced Pro-
cess Control system overall.

3.5 Conformance Testing

The conformance testing methodology supported by
MCITT is modeled on that of the NIST SQL Test Suite,

2 The overhead in question is simply the reading of the system clock.
The tare was found to be a mere 2ms on one of our testing platforms,
and too far below the resolution of the clock to be measured with any
accuracy on another, so we generally disregard the tare.

with automation of some tasks that were previously
done by hand. Each conformance test follows a pattern
that culminates with the reporting of a test verdict. The
verdicts are expected to be collected and summarized by
an external reporting system, which is not included with
the MCITT distribution. The code that MCITT gener-
ates for conformance tests can be customized to work
with a particular test harness and test reporting system
simply by modifying the binding.

A conformance test can report a verdict of PASS,
FAIL, or NOGO. PASS and FAIL indicate that the test
was successfully performed, with the results as re-
ported. NOGO indicates that there was an operational
problem that prevented the test from being performed—
for example, the attempt to connect to the ORB (Object
Request Broker) timed out. If there are extreme opera-
tional problems, a test may fail to report a verdict; this
is handled the same as NOGO.

The best policy on NOGO and missing results de-
pends on the nature of the testing being performed. In
the SQL conformance testing program, the tester exam-
ined each NOGO or nonreporting test and either got it
to run to completion or promoted the verdict to PASS. In
different testing contexts it may be more appropriate to
equate NOGO with FAIL.

ITL includes special-purpose commands for the fol-
lowing tasks related to conformance testing:
• Identify the conformance test (begin test);
• Verify pre- and post-conditions with verbose logging
of expected values, actual values, and sub-test verdicts
(assert);
• Explicitly set NOGO and/or FAIL indicators (nogo,
fail);
• End the test and report a verdict (end test).

MCITT also automatically generates the boilerplate
code to report a NOGO condition if an unexpected ex-
ception is thrown at the test client.

3.6 Stress Testing

The ITL commandfork causes the test program to
split itself into N identical concurrent processes and
resume execution only after all copies have become ap-
proximately synchronized with one another. This is use-
ful for conducting stress tests on servers to see how
many concurrent requests they can handle, to determine
how many active CORBA processes a host machine can
handle before resource contention becomes a problem,
and to determine the effect of request volume on server
response time.

In a particular test, it was found that attempts to
connect to a CORBA server began failingen masse
under relatively mild stress conditions (e.g., with a 4 s
inter-arrival time on connection attempts), and response

198

Volume 104, Number 2, March–April 1999
Journal of Research of the National Institute of Standards and Technology

times on successful requests became unacceptably long.
Resource contention was therefore identified as a signif-
icant threat to system performance, and the volume of
requests would need to be taken into consideration when
configuring the systems used in production.

It is possible to conduct other kinds of stress tests
simply by using MCITT-generated clients and servers to
increase the population of components in a distributed
system. For example, if a control system is designed to
handle hundreds of subordinate components, but it is not
feasible to provide hundreds of real components with
which to test it, MCITT-generated simulations may be
substituted. This might more properly be called a scal-
ability test.

4. Limitations

Due to finite resources, some features of MCITT for
which there was no immediate need were not finished.
Those who ultimately commercialize and maintain
MCITT are encouraged to relax or eliminate these lim-
itations.

A full list of limitations is given in the documentation
within the distribution. Some minor limitations that are
difficult to explain in brief have been omitted here.

4.1 Memory Management

MCITT is designed as a testing tool, not as a means
for implementing servers for production use. As such,
the emphasis is on simplicity and correct operation, and
not on long-term stability. The practical ramification of
this is that some MCITT constructs will cause memory
leakage in generated servers. While it should not have
any impact on servers used for testing purposes, this
leakage may become noticeable if MCITT generated
servers are (improperly) put into production use.

4.2 Data Types

The Any data type is only minimally supported. IDL
containing Anys can be processed by MCITT, and Any
values created with inline code can be returned through
MCITT-generated functions. However, generation of
Anys from ITL or CIS without the use of inline code is
not supported.

IDL arrays are not supported. Sequences can be used
instead.

4.3 Fork

The ITL commandfork is not supported in the NT or
Java bindings.

4.4 Reporting

In assertions for complex types (sequences, structs,
unions), the actual value of the run-time data item is not
printed. However, the assertion is properly checked. (A
full comparison of its value against the expected value is
performed, and the result is printed.)

4.5 Java Binding

The Java binding is only stable for small, simple inter-
faces. The causes of the failures encountered with more
complex interfaces are not yet understood.

Because of the aforementioned failures, work on the
Java binding was abandoned with only simple data
types, input parameters, and return values supported.
Complex data types and parameters of modeout or
inout are not supported or tested.

Some minor syntax changes are needed to change
ITL files from C++ toJava. For example, embedded use
of C++ pointer notation (->,*) must be changed to Java
syntax. Most of the actual work can be automated with
TEd as is done in the demos provided with the distribu-
tion.

4.6 CIS Limitations

Generating requests from CIS is not supported. Only
assertion-checking and response generation are done.

The assertion checking in generated servers will not
always detect deviations from the CIS that consist of the
correct messages happening in the wrong order.

There is no way to specify exceptions in a CIS.

5. Conclusion

Software testing today is still more art than science.
While formal approaches may lend a feeling of rigor to
software testing, it is unlikely that the results of software
testing will ever be as reliable as the results of physical
experiments, as we would hope. The reason is simply
that the run-time environment contains too many hid-
den, unknown, and/or uncontrollable variables for it to
serve as a laboratory. The industrial user of shrink-
wrapped software components can neither predict nor
control what faults they may introduce into the system,
and few people are surprised any more when compo-
nents just “blow up” for no known, reproducible reason.
Often these disasters result from changes in the operat-
ing system and file system environment that are, on the
face of things, completely irrelevant to the crashed pro-
gram. In such cases, the obviously incomplete specifica-
tions are of little assistance, and it is only by years of

199

Volume 104, Number 2, March–April 1999
Journal of Research of the National Institute of Standards and Technology

experience with the entire operating environment that a
skilled engineer may know where to look for the prob-
lem. It is hoped that MCITT will provide some practical
assistance to the engineers who must prevent or diag-
nose such failures.

6. References

All hyperlinks were valid as of February 8, 1999.

[1] What Is CORBA? (tutorial),kURL:http://www.omg.org/corba/
whatiscorba.htmll, Object Management Group (no date).

[2] F. P. Brooks, Jr., The Mythical Man-Month, Addison-Wesley
(1995) p. 148.

[3] Project Brief: Advanced Process Control Framework Initiative,
kURL:http://www.atp.nist.gov/www/comps/briefs/95120027.
html, National Institute of Standards and Technology (1996).

[4] H. M. Bloom and N. Christopher, A Framework for Distributed
and Virtual Discrete Part Manufacturing, in Proceedings of the
CALS EXPO ‘96, Long Beach, California (1996).

[5] MCITT FTP site, kURL:ftp://ftp.cme.nist.gov/pub/mcitt/l, Na-
tional Institute of Standards and Technology (1998).

[6] M. Hsueh, T. K. Tsai, and R. K. Iyer, Fault Injection Techniques
and Tools, Computer30 (4), 75–82 (1997).

[7] L. L. Rose, Getting the Most Out of an Automated Test Tool,
kURL:http://www.rational.com/sitewide/support/whitepapers/
dynamic.jtmpl?doc_key=303l, Rational Software Corporation
(1998).

[8] J. Sullivan, SQL Test Suite Goes Online, Computer30 (6),
103–105 (1997).

[9] Portable Operating System Interface (POSIX) Part 2: Shell and
Utilities, (1992), Volume 1, Section 4.55. Available from either
the American National Standards Institute or the Institute of
Electrical and Electronics Engineers.

[10] D. Flater, Interface Testing Language,kURL:http://www.mel.
nist.gov/msidstaff/flater/mcitt/itl.htmll, National Institute of
Standards and Technology (1998).

[11] UML Notation Guide, Version 1.1, Section 8: Collabora-
tion Diagrams, kURL:http://www.rational.com/uml/resources/
documentation/notation/notation8a.jtmpll, Rational Software
Corporation (1997).

About the author: David Flater is a Computer Scien-
tist in the Manufacturing Systems Integration Division
of the NIST Manufacturing Engineering Laboratory.
The National Institute of Standards and Technology is
an agency of the Technology Administration, U.S. De-
partment of Commerce.

200

